
Simba SDK

Build a Java ODBC Connector in 5 Days (Windows)
Version 10.1.22
October 2021

Copyright
This document was released in October 2021.

Copyright ©2014–2021Magnitude Software, Inc. All rights reserved.

No part of this publicationmay be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission
fromMagnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in your
Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only andmay be
trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged with
the software.

Contact Us

Magnitude Software, Inc.

www.magnitude.com

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
2

http://www.simba.com/
http://www.magnitude.com/

Table of Contents
Table of Contents
About this Guide 5

Simba SDK Overview 7

ODBC Standards 7

The Simba SDK Solution 7

About the JavaUltraLight Sample Connector 8

Day One 12

Install the Simba SDK 12

Set Environment Variables 13

Build the Sample Java ODBC Connector 14

Update the Windows Registry 17

Examine the Windows Registry 18

Connect to the Data Store 19

Set Up a Custom Project 20

Update the Registry for a Custom Connector 23

Day Two 27

Finding the TODO messages 27

Find or create the Java Virtual Machine 27

Set the Connector Properties 27

Set the Logging Details 28

Check the Connection Settings 28

Establish a Connection 29

Update the Configuration File 29

Day Three 30

Create and Return Metadata Sources 30

Day Four 36

Enable Data Retrieval 36

Day Five 39

Productize Your Custom Connector 39

Create a Connector Configuration Dialog 40

Reference 41

Data Retrieval 41

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
3

http://www.magnitude.com/

Java Server Configuration 42

32-bit vs 64-bit ODBC Data Source Administrator 43

Bitness and the Windows Registry 44

Contact Us 47

Third-Party Trademarks 48

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
4

http://www.magnitude.com/

About this Guide
Purpose

This guide explains how to use the Simba SDK to create a custom Java ODBC
connector for a data store that is not SQL-capable. It explains how to customize the
JavaUltraLight sample connector, which is included with the Simba SDK.

Using this sample connector is the quickest and easiest way to create a custom Java
ODBC connector. At the end of five days, you will have a read-only connector that
connects to your data store. This custom connector can be used as the foundation for a
commercial DSI implementation.

Advantages of Using the Simba SDK

The Java ODBC specification defines a rich interface that allows any Java ODBC-
enabled application to connect to a data store. In order to implement a connector that
supports this specification, developers have to understand all the complexities of error
checking, session management, and data conversion, then design their code in a robust
and efficient manner. Developers must also understand how to optimize data retrieval in
order to get maximum performance when connecting to large and complex data stores.

For data stores that do not support SQL, the Simba SDK provides an SQL parser and an
execution engine. Developers can use these features to translate SQL queries to a
custom API that the data store understands.

The Simba SDK, developed by experts in the field, is a complete implementation of the
ODBC specification. It exposes an easy-to-use SDK that allows you to create a robust
and efficient connector for your data store.

Build a Custom Java ODBC Connector in Five Days

Over the course of five days, this guide explains how to accomplish the following tasks:

1. Set up the development environment and build the sample connector.
2. Use the sample connector as a template to create a custom Java Java ODBC

connector.
3. Make a connection to the data store.
4. Retrieve metadata.
5. Work with columns.
6. Retrieve data.
7. Rename and rebrand the custom Java Java ODBC connector.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
5

About this Guide

http://www.magnitude.com/

In the JavaUltraLight connector, the areas of code that require modification are marked
with “TODO” messages and a short explanation. Some of these changes customize the
connector for your specific data store, while other changes rename the connector for
your company or product.

Audience

The guide is intended for developers who want to use the Simba SDK to build a
connector for a data store that is not SQL-capable.

Document Conventions

Italics are used when referring to book and document titles.

Bold is used in procedures for graphical user interface elements that a user clicks and
text that a user types.

Monospace font indicates commands, source code or contents of text files.

NOTE:

Indicates a short note appended to a paragraph.

IMPORTANT:

Indicates an important comment related to the preceding paragraph.

Knowledge Prerequisites

To use the Simba SDK to build a custom Java ODBC connector, the following
knowledge is helpful:

l Familiarity with the Java programming language.
l Ability to use the data store to which the connector you are developing will
connect.

l An understanding of the role of Java ODBC technologies and driver managers in
connecting to a data store.

l Exposure to SQL.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
6

About this Guide

http://www.magnitude.com/

Simba SDK Overview
Applications, such as Crystal Reports and Tableau, use connectors to connect to data
stores from which they read and write data. Applications support the Java ODBC
protocol to enable connection with any connector that also supports Java ODBC. A
connector exposes the Java ODBC protocol to the application and another API, such as
SQL or a custom API, to the data store.

Note:

This guide explains how to create a Java ODBC connector for a data store that is
not SQL-capable. To create a Java ODBC connector for a data store that is SQL-
capable, see Build a Java ODBC Connector for SQL-Capable Data Sources in 5
Days.

ODBC Standards

ODBC is one of the most established and widely-supported APIs for connecting to and
working with databases. A main component of this technology is the ODBC connector,
which connects an application to the database.

For a brief description of the ODBC standard, see http://www.simba.com/resources/data-
access-standards-library#!odbc.

For complete information on the ODBC 3.80 specification, see the ODBC Programmer's
Reference at http://msdn.microsoft.com/en-us/library/ms714177(v=vs.85).aspx.

The Simba SDK Solution

Connectors based on the Simba SDK leverage its error checking, session management,
data conversion, optimization, and other low-level implementation details. The Simba
SDK uses Java ODBC to communicate with the driver manager and a simple API (called
the Data Store Interface API or DSI API) to communicate with the data store. The DSI
API defines the primitive operations needed to access a data store.

The figure below shows a typical Java ODBC stack:

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
7

Simba SDK Overview

http://odbc_driver_sql-aware_data_sources/
http://odbc_driver_sql-aware_data_sources/
http://www.simba.com/resources/data-access-standards-library#!odbc
http://www.simba.com/resources/data-access-standards-library#!odbc
http://msdn.microsoft.com/en-us/library/ms714177(v=vs.85).aspx
http://www.magnitude.com/

SDK developers create an implementation of a DSI (also known as a DSI
Implementation or DSII) that applications use to access the particular data store in the
process of executing an SQL statement. In the final executable, the components from
Simba SDK take responsibility for meeting the data access standards while the custom
DSI implementation takes responsibility for accessing the data store and translating it to
the DSI API.

ODBC applications, such as Tableau or Microsoft Excel, use this executable when
connecting to the data store in the process of executing an SQL statement.

About the JavaUltraLight Sample Connector

The Simba SDK includes a sample connector that you can use as a template to create a
custom Java ODBC connector for data stores that are not SQL-capable. The
JavaUltraLight connector is a sample DSI implementation of an ODBC connector,
written in Java, which reads files that are in tabbed Unicode text format. Because text
files are not a SQL-aware data source, the Simba SQLEngine component must be used
to perform the necessary SQL processing.

Using the JavaUltraLight sample connector to prototype a DSI implementation for a
custom data store helps developers understand how the Simba SDK works. By
removing the shortcuts and simplifications implemented in the JavaUltraLight connector,

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
8

Simba SDK Overview

http://www.magnitude.com/

you can use it as the foundation for a commercial DSI implementation and create a
custom ODBC connector for a data store that is not SQL-capable.

The UML diagram below shows a typical design pattern for a DSI implementation:

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
9

Simba SDK Overview

http://www.magnitude.com/

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
10

Simba SDK Overview

http://www.magnitude.com/

Notice the circular pattern of class relationships, headed by iResult and anchored by
QSUtilities.

The iResult class is responsible for retrieving column data and maintaining a cursor
across result rows. The QSUtilities class contains platform-specific utility functions.

To implement data retrieval, your Reader class interacts directly with your data store to
retrieve data, and then deliver the data to the QSTable class on demand. The Reader
class should manage caching, buffering, paging and all the other techniques to speed
data access.

As a starting point, to make your connector work properly with Microsoft Excel you can
add metadata access by implementing the QSTypeInfoMetadataSource class and
using the DSIExtMetadataHelper class. The DSIExtMetadataHelper class is
responsible for iterating through tables and stored procedures so the engine can
generate catalog function metadata.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
11

Simba SDK Overview

http://www.magnitude.com/

Day One
The Day One instructions explain how to install the Simba SDK, compile the sample
Java ODBC connector, and review the configuration information created at compile time.

After the sample Java ODBC connector is successfully compiled, it is used to retrieve
data from the data source that is included with the Simba SDK. The sample Java ODBC
connector is then used to create the framework for a custom Java ODBC connector,
which is renamed and used to retrieve sample data.

At the end of the day, you will have compiled, built and tested your custom Java ODBC
connector.

Install the Simba SDK

The Simba SDK installation package includes:
l The Simba SDK implementation in all supported platforms.
l Sample connectors for most supported platforms.
l PDF versions of the documentation.
l An HTML version of the C++ and Java API.

To install the Simba SDK:

1. Uninstall any previous versions of the Simba SDK.
2. Make sure that Visual Studio is closed.
3. Double-click the Simba SDK executable that corresponds to your version of Visual

Studio, and then follow the instructions provided in the installation wizard.

The installer sets the following environment variables, where [INSTALL_DIR] is the
Simba SDK installation directory.

Environment Variable Value

SIMBAENGINE_DIR [INSTALL_DIR]\SimbaEngineSDK\
10.1\DataAccessComponents

SIMBAENGINE_THIRDPARTY_DIR [INSTALL_DIR]\SimbaEngineSDK\
10.1\DataAccessComponents\ThirdParty

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
12

Day One

http://www.magnitude.com/

Important:

The Simba SDK environment variables are defined only for the user who ran the
installation. If the SDK is installed as a regular user, Visual Studio must also be
run as a regular user and not an administrator.

Components of the JavaQuickstart Sample connector

The Simba SDK provides the following components to help you write your custom
ODBC connector in Java:

l The native C++ component, JavaUltraLightJNIDSI.

This component finds or creates an instance of the Java Virtual Machine (JVM)
and provides the Java connector implementation name to the bridge between C++
and Java (SimbaJNIDSI).

l The Java component, JavaUltraLightDSII.

This component is the DSII.

Set Environment Variables

Set JAVA_HOME to the root of your JDK, and ensure PATH includes the path to
jvm.dll

To set JAVA_HOME to the root of your JDK:

1. From the Start menu, select System Properties > Advanced, then click
Environment Variables.

2. If JAVA_HOME is not listed in the System variables list:
a. Click New.
b. In the Variable name field, type JAVA_HOME.
c. In the Variable value field, type the path of the java home directory. For

example, C:\Program Files\Java\jdk1.7.0_09.

To ensure PATH includes the path to jvm.dll

1. Find the location of the jvm.dll on your machine. For example, C:\Program
Files\Java\jdk1.8.0_60\jre\bin\server.

2. From the Start menu, select System Properties > Advanced, then click
Environment Variables.

3. Ensure the PATH environment variables includes the path to the jvm.dll.
4. To edit the PATH environment variable, click Edit and then add the path to the

jvm.dll file to the end of PATH.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
13

Day One

http://www.magnitude.com/

Note:

There is a difference between the 32-bit and 64-bit jvm.dll files. Ensure you
set the path to the correct one.

Build the Sample Java ODBC Connector

The JavaUltraLight sample connector is included with the installation of the Simba SDK.
It demonstrates one possible implementation of a read-only connector that reads data
from tabbed Unicode files.

Build the C++ Component (QuickstartJNIDSI)

1. In Microsoft Visual Studio, click File > Open > Project/Solution.
2. In the Open Project dialog, navigate to the following folder:

[INSTALL_
DIR]
\SimbaEngineSDK\
10.1
\Examples\Source\
JavaUltraLight\Source\JavaUltraLightJNIDSI

Where [INSTALL_DIR] is the installation directory.
3. Select the file QuickstartJNIDSI_vs2013.sln, and then click Open. This

solution file contains the QuickstartJNIDSI, which is the connector’s native
component.

4. Click Build > Configuration Manager.
5. Click the drop-down arrow next to the Active Solution Configuration field, then

select Debug_MTDLL, and click Close.
6. Click the drop-down arrow next to the Active Solution Platform field:

a. To build a 32-bit connector, select Win32.
b. To build a 64-bit connector, select x64.

7. Click Close.
8. Click Build > Build Solution.

The build appears in the following folder:

[INSTALL_
DIR]\SimbaEngineSDK\
10.1
\Examples\Source\
JavaUltraLight\Bin\<BUILD>\<RELEASE|DEBUG><CONFIGURATION>, where

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
14

Day One

http://www.magnitude.com/

l <BUILD> is a combination of your operating system, machine bitness, and
compiler

l <RELEASE|DEBUG> is release or debug
l CONFIGURATION> is mt if you select MTDLL as the solution configuration,
otherwise md

For example:
C:\Simba
Technologies\SimbaEngineSDK\
10.1\Examples\Source\JavaUltraLight\Bin\Windows_
vs2013\debug32md\QuickstartJNIDSIIODBC32.dll

Build the Java Component (JavaQuickstart)

You can use ANT or tools that support ANT, such as the Eclipse IDE, to build the Java
component. As an example, these instructions describe how to build JavaQuickstart
using the Eclipse IDE.

1. Ensure the JAVA_HOME environment variable is pointing to the root of your JDK,
and the PATH environment variable contains the path to jvm.dll. For more
information, see Set Environment Variables.

2. Use Eclipse to import the JavaUltraLight project as an existing project into your
workspace.

The project files are located under [INSTALL_DIR]\Examples\Source\
JavaUltraLight\Source\JavaUltraLightDSII

Important:

Uncheck the box Copy projects into workspace.

If this box is checked, the project is copied and the build will not succeed
due to relative paths in the build files. To put the project in a different
location, copy the entire project structure.

Note:

The Simba SDK includes a sample connector called JavaQuickJSON,
which shows you how to write a JDBC connector. This guide uses the
JavaUltraLight connector, which shows you how to write an ODBC
connector using Java.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
15

Day One

http://www.magnitude.com/

3. Update the classpath.
a. Select the JavaUltraLight project, then select Project > Properties > Java

Build Path > Libraries.
b. Select SIMBAENGINE_DIR > Edit > Variable > New.
c. Create a new classpath variable called SIMBAENGINE_DIR with the value

[INSTALL_DIR]\DataAccessComponents, for example: C:\Simba

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
16

Day One

http://www.magnitude.com/

Technologies\SimbaEngineSDK\
10.1\DataAccessComponents.

d. A message is displayed, saying that the classpath variables have changed
and that a full rebuild is recommended. Click No.

e. Click OK to close the properties windows.
4. Build the connector using the following steps:

a. Click Run > External Tools > External Tools Configurations.
b. In the External Tools Configurations window, double-click Ant Build.

A setup page for the new Ant build configuration is displayed.
c. In the Name field, type JavaUltraLight.
d. On the Main tab, in the Buildfile section, click Browse Workspace.
e. In the Choose Location window, click JavaQuickstartBuilder.xml and then

click OK.
f. Click Apply, then click Run.

The JavaUltraLight connector is built using Ant. The resulting library is placed in
[INSTALL_
DIR]\Examples\Source\JavaUltraLight\Lib\JavaUltraLight.jar.

Related Links

Java Server Configuration

Update the Windows Registry

1. In Microsoft Visual Studio, click File > Open > File and navigate to [INSTALL_
DIR]
\SimbaEngineSDK\10.1\Examples\Source\JavaQuickstart\Source.

2. Open one of the following files:
l For 32-bit Windows, open SetupMyJavaQuickstartDSII-
32on32.reg.

l Or, for a 32-bit ODBC connector on 64-bit Windows, open
SetupMyJavaQuickstartDSII-32on64.reg.

l For a 64-bit ODBC connector on 64-bit Windows, open
SetupMyJavaQuickstartDSII-64on64.reg.

3. In the file, replace [INSTALL_DIRECTORY] with the Simba SDK installation
directory. Use double backslashes in the path.

Example:

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
17

Day One

http://www.magnitude.com/

If the Simba SDK installation directory is C:\Simba Technologies, replace all
instances of [INSTALL_DIR] with C:\\Simba Technologies.

4. Ensure the DBF path points to the sample database included with the Simba SDK,
for example:
"DBF"="C:\\Simba
Technologies\\SimbaEngineSDK\\10.0\\Examples\\Databases\\
Quickstart"

5. Beside the line that starts with "Driver"= verify that the path to the connector
dll file is correct.

6. Click Save and then close the file.
7. Update the Windows registry by double-clicking the registry file that you just

modified.

A message is displayed that says that the keys and values have been successfully
added to the registry.

Enable Debugging

To enable debugging for the JavaUltraLight sample connector:

1. In the Registry file that you edited above, edit the value data for the JNIConfig
value so that the value for -Djava.class.path is correct.

2. Save, close, and then double-click the Registry file that you modified in step 1.

A message appears indicating that the keys and values have been successfully added
to the Registry.

Examine the Windows Registry

Note:

You cannot use the ODBC Data Source Administrator to configure this data
source because a configuration dialog has not been provided for the
JavaQuickstart connector. If you try to use the ODBC Data Source Administrator,
you will see the following error message:

"The setup routines for the JavaQuickstartDSIIDriver ODBC connector could not
be found. Please reinstall the driver."

The Simba SDK installer automatically adds or updates the following registry keys that
define Data Source Names (DSNs) and connector locations:

l ODBC Data Sources - lists each DSN/connector pair
l JavaUltraLightDSII - defines the Data Source Name (DSN). The ODBC Driver
Manager uses this key to connect the connector to the database.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
18

Day One

http://www.magnitude.com/

l ODBC Drivers - lists the connectors that are installed
l JavaUltraLightDSIIDriver - defines the connector and its setup location. The
ODBC Driver Manager uses this key to connect to and configure the connector.

Note:

The installer for your custom connector must create similar registry keys.

To view the registry keys for the JavaUltraLight connector:

1. From a command line, run regedit.exe.
2. In the registry editor, navigate to one of the following root directories:

l HKEY_LOCAL_MACHINE\SOFTWARE\ODBC for 64-bit connectors on 64-
bit machines and 32-bit connectors on 32-bit machines.

l Or, HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432NODE\ODBC for
32-bit connectors on 64-bit machines.

3. To view the registry keys that are related to ODBC connectors, look in the
ODBCINST.INI subkey.

Related Links

Bitness and the Windows Registry

Connect to the Data Store

To connect to the data store and test the JavaUltraLight connector, any ODBC
application can be used. This section shows how to use the ODBCTest tool, which is
included in the Microsoft Data Access (MDAC) 2.8 Software Development Kit (SDK):
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-
de4329c8c850&displaylang=en

Note:

Before testing the data source, make sure that the PATH environment variable
includes the path to the jvm.dll, for example C:\Program
Files\Java\jdk1.7.0_09\jre\bin\server\.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
19

Day One

http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=5067faf8-0db4-429a-b502-de4329c8c850&displaylang=en
http://www.magnitude.com/

To connect to the data store using the JavaUltraLight connector:

1. Navigate to the folder containing the ODBC Test application, by default:
C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools

2. Navigate to the folder that corresponds to your connector’s architecture: amd64,
ia64 or x86.

Example:

If you built the 32-bit version of your connector on a 64-bit machine, select the x86
version.

3. Click one:
l odbcte32.exe to launch the ANSI version
l Or, odbct32w.exe to launch the Unicode version.

Important:

It is important to run the correct version of the ODBC Test tool for ANSI or
Unicode and 32-bit or 64-bit.

4. In the ODBC Test tool, click Conn > Full Connect.
The Full Connect window opens.

5. In the Full Connect dialog, select JavaUltraLightDSII from the list of data sources,
and then click OK.

6. In the ODBC Test window, enter SELECT * from EMP.

7. Click and to output a simple result set. The results are displayed in the
window.

You have successfully used the JavaUltraLight connector to connect to the sample data
store and retrieve data.

Related Links

Bitness and the Windows Registry

Testing Your Simba SDK ODBC Connector with ODBC Test

Set Up a Custom Project

Once the JavaUltraLight has been built and tested, you can create a new project for your
custom ODBC connector.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
20

Day One

http://www.simba.com/blog/testing-driver-odbc-test
http://www.magnitude.com/

Important:

It is very important that you create your own project directory. You might be
tempted to simply modify the sample project files, but we strongly recommend
that you create your own project directory. If you simply modify the sample project
files:

l All your changes will be lost when you install a new version of the SDK.
l You will lose your frame of reference for debugging.
There may be times, for debugging purposes, that you will need to see if
the same error occurs using the sample connectors. If you have modified
the sample connectors, this won’t be possible.

To set up a custom project:

1. In Windows Explorer, copy the following directory and paste it to the same location:
[INSTALL_
DIR]\SimbaEngineSDK\10.1\Examples\Source\JavaUltraLight

where [INSTALL_DIR] is the Simba SDK installation directory. This will create a
new directory called JavaUltraLight - Copy.

2. Rename the directory to the name of your custom ODBC connector. This name will
be referred to as [PROJECT] for the rest of these steps.

3. In the [PROJECT] > Source directory, rename the JavaUltraLightJNIDSI
directory to [PROJECT]JNIDSI.

4. In the [PROJECT] > Source directory, rename the JavaUltraLightDSII
directory to [PROJECT]DSII.

5. Update the QuickstartJNIDSI_VS201x.sln file:
a. In your [PROJECT]JNIDSI directory, right-click the QuickstartJNIDSI_

VS201x.sln file.

b. Select Open With > Microsoft Visual Studio Version Selector.

c. In the Microsoft Visual Studio menu, click View > Solution Explorer.

d. Using the Solution Explorer, in the Properties window, rename the
QuickstartJNIDSI_VS201x solution to [PROJECT]JNIDSI_VS201x.

e. Rename the QuickstartJNIDSI project to [PROJECT]JNIDSI.
f. Change the branding in
Simba::JNIDSI::SetConfigurationBranding() in main_
windows.cpp.

g. Click File > Save All.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
21

Day One

http://www.magnitude.com/

6. Update the JavaUltraLightBuilder.xml file:
a. In Windows Explorer, open your [PROJECT]DSII directory and then rename

the JavaUltraLightBuilder.xml file to [PROJECT]Builder.xml.
This is the Apache Ant builder file (.xml) for your new ODBC connector.

b. Using a text editor, open [PROJECT]Builder.xml and replace every
instance of “JavaUltraLight” and “JavaQS” in the source code with the name
of your new ODBC connector.

c. Update the copyright information for the “doc” target.
d. Save and close the file.

7. Open the .project file in a text editor and replace the JavaUltraLightwithin the
<name> tags with your project name. Save and close the file.

Build the C++ Component

1. In Microsoft Visual Studio, click Build > Build Solution or press F7 to build the
connector.

When you build your new project, “TODO” messages appear in the Output window along
with the build information. If the Output window is not displayed automatically, you can
open it by selecting Debug > Windows > Output.

TODO #1: Find or create the Java Virtual Machine.(QuickstartJNIDSI.cpp)

Build the Java component

You can use ANT or tools that support ANT, such as the Eclipse IDE, to build the Java
component. As an example, these instructions describe how to build JavaQuickstart
using the Eclipse IDE.

1. In Eclipse, select File > Import.
2. In the Import window, click General > Existing Projects into Workspace and then

click Next.
3. Choose Select root directory, and then click Browse to navigate to [INSTALL_

DIR]\SimbaEngineSDK\10.1\Examples\Source\<YourProjectNam
e>\ Source\<YourProjectName>DSII. Then click Finish.

4. To see your new Java project in the Project Explorer window, click Window >
Show View > Project Explorer.

5. Click Run > External Tools > External Tools Configurations.
6. In the External Tools Configurations window, double-click Ant Build.

A setup page for the new Ant build configuration is displayed.
7. In the Name field, type your project name.
8. On the Main tab, in the Buildfile section, click Browse Workspace.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
22

Day One

http://www.magnitude.com/

9. In the Choose Location window, click [Project]Builder.xml and then click
OK.

10. Click Apply.
11. Still in the Ant build configuration, switch to the Environment tab. Add an

environment variable called SIMBAENGINE_DIR with the value [INSTALL_
DIR]\SimbaEngineSDK\10.1\DataAccessComponents. Click Apply.

12. Click Run. This will build the connector using Apache Ant.

Search your Java workspace for ‘TODO’ to find the following comments that mark
locations where changes to your connector code need to be made:

TODO #1: Set the connector properties. (QSDriver.java)
TODO #2: Set the connector-wide logging details. (QSDriver.java)
TODO #3: Set the connection-wide logging details (QSConnection.java)
TODO #4: Check Connection Settings. QSConnection.java)
TODO #5: Establish A Connection. (QSConnection.java)
TODO #6: Update configuration file. (QSConnection.java)
TODO #7: Create and return your Metadata Sources.(QSDataEngine.java)
TODO #8: Open A Table. (QSDataEngine.java)
TODO #9: Assign a unique component ID. (QSDriver.java)
TODO #10: Update Messages properties file. (QSDriver.java)
TODO #11: Create an ExceptionBuilder. (QSDriver.java)
TODO #12: Register the Quickstartmessages. (QSDriver.java)

Over the next four days, you will visit each “TODO” and modify the source code.

Update the Registry for a Custom Connector

You must update the Windows registry to add the information for your new custom Java
ODBC connector before you can test it.

Note:

You cannot use the ODBC Data Source Administrator to configure this data
source.

To update the Windows Registry:

1. In Microsoft Visual Studio, click File > Open > File and navigate to [INSTALL_
DIR]
\SimbaEngineSDK\10.1\Examples\Source\JavaQuickstart\Source.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
23

Day One

http://www.magnitude.com/

2. Open one of the following files:
l For 32-bit Windows, open SetupMyJavaQuickstartDSII-
32on32.reg.

l Or, for a 32-bit ODBC connector on 64-bit Windows, open
SetupMyJavaQuickstartDSII-32on64.reg.

l For a 64-bit ODBC connector on 64-bit Windows, open
SetupMyJavaQuickstartDSII-64on64.reg.

3. In the file, replace [INSTALL_DIRECTORY] with the Simba SDK installation
directory. Use double backslashes in the path.

Example:

If the Simba SDK installation directory is C:\Simba Technologies, replace all
instances of [INSTALL_DIRECTORY] with C:\\Simba Technologies.

4. To enable debugging, update the value data for the JNIConfig value so that the
value for Djava.class.path is correct. For more information, see Enable
Debugging .

5. Next, update the ODBC Data Sources section to add your new data source. Under
the [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC Data
Sources] section, change "MyJavaQuickstartDSII"="MyJavaQuickstartDSIIDriver"
to the name of your new data source and new connector. For example, "
[PROJECT]DSII"="[PROJECT]DSIIDriver"

6. Then, modify the data source definition for that data source. Change the line that
says [HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBC.INI\MyJavaQuickstartDSII] so that it
contains your new data source name. For example, [HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBC.INI\[PROJECT]DSII].

7. Beside the line that starts with "Driver", update the path to the .dll file.

8. Update the ODBC Drivers section to add your new connector. Under the [HKEY_
LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers] section,
change "MyJavaQuickstartDSIIDriver"="Installed" to match the name of your new
connector. For example, "[PROJECT]DSIIDriver"="Installed"

9. Modify the connector definition for that connector. Change the line that says
[HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\MyJavaQuickstartDSIIDriver]
so that it contains your new connector name. For example, [HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\[PROJECT]DSIIDriver].

10. Beside the line that starts with “Driver”, update the path to the .dll file.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
24

Day One

http://www.magnitude.com/

11. Click Edit > Find and Replace > Quick Replace. Then, replace “JavaQuickstart” in
the whole file with the name of your new connector.

12. Click Save and then close the file.

13. In the Registry Editor (regedit.exe), click File > Import, navigate to the registry
file that you just modified and then click Open.

A message is displayed that says that the keys and values have been successfully
added to the registry.

Enable Debugging

During the development of your connector, it may be necessary for you to trace through
your connector during execution to locate problems. Most Java applications will either
have a shell script/batch file to launch the application or have a configuration file where
JVM options can be added

To enable debugging for the JavaUltraLight sample connector:

Add the following JVM options to enable debugging with the Eclipse IDE:
• –Xdebug
• -Xrunjdwp:transport=dt_
socket,address=localhost:8000,suspend=n,server=y

Add these to the registry key /HKEY_LOCAL_
MACHINE/SOFTWARE/Simba/JavaUltraLight/Driver/JNIConfig

Each value needs to be separated by a pipe “|” character. For example:
-Djava.class.path=C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\
JavaUltraLight\Lib\JavaUltraLight.jar|-Xdebug|-
Xrunjdwp:transport=dt_
socket,address=localhost:8000,suspend=n,server=y

Once options are added to your application, launch your application. You can now
attach the Eclipse debugger to the running application and debug your connector.

If you need to debug the initialization of your connector, set the suspend parameter to
y. A good breakpoint to start with is inside the ULDriver constructor. Launch your
JDBC-enabled application. The JVM will suspend execution until a debugger has been
attached.

See the Eclipse documentation for instructions on debugging Remote Java Applications.

Test Your Custom Connector

To test your custom connector, follow the instructions in Connect to the Data Store,
connecting to your custom connector instead of the JavaUltraLight connector.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
25

Day One

http://www.magnitude.com/

Summary of Day One

You have successfully completed the following tasks:
l Built and tested the JavaUltraLight sample connector.
This verifies that your installation and development environment are properly
configured.

l Created, built, and tested a custom connector project by copying the
JavaUltraLight connector.
You can use this project as a framework to create your custom Java ODBC
connector.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
26

Day One

http://www.magnitude.com/

Day Two
Day Two instructions explain how to customize your Java ODBC connector, enable
logging, and establish a connection to your data store.

Finding the TODO messages

When the custom project is built, TODOmessages display in the Output window.

To rebuild the whole solution, select Build > Rebuild Solution. If the Output window is
not open, select Debug > Windows > Output.

Double click a TODOmessage to jump to the relevant section of code.

Find or create the Java Virtual Machine
TODO #1 Find or create the Java Virtual Machine. (QuickstartJNIDSI.cpp)

For the purposes of prototyping, this TODO is purely informational. There is nothing to
change here right now, although you may want to add processing at this point for a
commercial connector.

The JvmFactory() implementation in QuickstartJNIDSI.cpp in the
QuickstartJNIDSI project is the first hook that is called from Simba’s JNIDSI layer to find
or create an instance of the Java VM during initialization of the bridge. This method is
called soon after the Driver Manager calls LoadLibrary() on your ODBC connector.
After that, the C++ to Java proxies are initialized and an instance of your DSI
implementation is created when the name of the Java Connector is retrieved from
GetFullJavaDriverName(). The name returned by this method must match the
fully-qualified name of the Java connector class in QSDriver.java, for example
com.simba.javaultralight.core.QSDriver.

Set the Connector Properties

TODO #1 Set the connector properties.
(QSDriver.java)

1. In Eclipse, in your project, go to the TODO #1 message in the QSDriver.java
file.

2. Look at setProperty() where you will set up the general properties for your
connector.

3. Change the DSI_DRIVER_DRIVER_NAME to the name of your new connector.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
27

Day Two

http://www.magnitude.com/

Set the Logging Details

TODO #2 Set the connector-wide logging details.
(QSDriver.java)

TODO #3 Set the connection-wide logging details.
(QSConnection.java)

1. Go to the TODO #2 message.
2. Change the connector log’s file name.
3. Go to the TODO #3 message.
4. Change the connection log’s file name.

For more information about how to enable logging, see Developing Connectors for Data
Stores Without SQL.

Note:

By default, the Simba SDK JavaQuickstart Connector maintains two kinds of log
files: one for all connector-based calls and one for each connection created.
Update these TODO’s if you do not require such fine granularity in logging.

Check the Connection Settings
TODO #4 Check Connection Settings. (QSConnection.java)

When the Simba ODBC layer is given a connection string from an ODBC-enabled
application, the Simba ODBC layer parses the connection string into key-value pairs.
Then, the entries in the connection string and the DSN are sent to
updateConnectionSettings() function for validation.

When a connection occurs, a connection URL is passed to the JDBC connector. As an
example, take the connection string
“jdbc:simba://User=user;Password=pass”. This connection string is broken
down into key-value pairs and stored in a ConnSettingRequestMap, in this case that
map would contain two entries: {“User”, “user”} and {“Password”, “pass”}. This map is
then passed down to the DSII.

1. Go to the TODO #4 message to jump to the relevant section of code.
2. The updateConnectionSettings() function should validate that the key-

value pairs within the requestMap are sufficient to create a connection. Use the
verifyRequiredSetting() or verifyOptionalSetting() utility
functions to do this.

3. If any of the values received are invalid, you should throw an exception.
4. If there are no further entries required, simply leave the responseMap empty.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
28

Day Two

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://www.magnitude.com/

Establish a Connection
TODO #5 Establish A Connection. (QSConnection.java)

Once QSConnection’s updateConnectionSettings() returns a responseMap
without any required settings (if there are only optional settings, a connection can still
occur), the Simba ODBC layer will call QSConnection’s connect() passing in all
the connection settings received from the application. This is where you should
authenticate the user against your data store using the information provided within the
requestMap parameter.

Should authentication fail, you should throw a BadAuthException. You can also use
the utility functions supplied: getRequiredSetting() and getOptionalSetting
().

Summary of Day Two

You have successfully authenticated the user against your data store and established a
connection.

Update the Configuration File
TODO #6 Update configuration file. (QSConnection.java)

The purpose of this configuration file is to enable server-specific behavior during
runtime. When the connector is configured to be a server, then the connection settings in
QSConnection’s updateConnectionSettings() and connect() need to be
augmented. This file only needs to exist if the connector is set to be a server.

For the purposes of prototyping, this TODO is mostly informational. If you know that you
will use the client/server configuration for accessing your data source, rename the
configuration file to use an appropriate name. Otherwise, there is nothing to change here
right now, though you may wish to revisit this later.

For more information about setting up a Java connector as a server, see Java Server
Configuration.

You have now authenticated the user against your data store.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
29

Day Two

http://www.magnitude.com/

Day Three
The Day Three instructions explain how to return the data used to pass catalog
information back to the ODBC-enabled application.

Create and Return Metadata Sources

Your custom ODBC connector uses metadata sources, provided by the Simba SDK, to
handle SQL catalog functions.

Overview of SQL Catalog Functions

ODBC applications need to understand the structure of a data store in order to execute
SQL queries against it. This information is provided using catalog functions. For
example, an application might request a result set containing information about all the
tables in the data store, or all the columns in a particular table. Each catalog function
returns data as a result set.

Most ODBC-enabled applications require a connector to implement the following catalog
functions.You may wish to implement additional catalog functions in your custom
connector.

Catalog Function Description

SQLGetTypeInfo Returns information about data types supported by the
data source.

SQLTables (CATALOG_
ONLY)

If CatalogName is SQL_ALL_CATALOGS and
SchemaName and TableName are empty strings, the
result set contains a list of valid catalogs for the data
source. (All columns except the TABLE_CAT column
contain NULLs.)

SQLTables (SCHEMA_
ONLY)

If SchemaName is SQL_ALL_SCHEMAS and
CatalogName and TableName are empty strings, the
result set contains a list of valid schemas for the data
source. (All columns except the TABLE_SCHEM column
contain NULLs.)

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
30

Day Three

http://www.magnitude.com/

Catalog Function Description

SQLTables (TABLE_
TYPE_ONLY)

If TableType is SQL_ALL_TABLE_TYPES and
CatalogName, SchemaName, and TableName are
empty strings, the result set contains a list of valid table
types for the data source. (All columns except the
TABLE_TYPE column contain NULLs.)

SQLTables Returns the list of table, catalog, or schema names, and
table types, stored in a specific data source.

SQLColumns Returns a list of columns in one or more tables.

Example: Using Catalog Functions with the JavaUltraLightconnector

1. In the ODBC Test application, connect to the JavaUltraLight connector.
2. To send the SQLTables (CATALOG_ONLY) catalog function, select Catalog >

SQLTables.
3. Enter SQL_ALL_CATALOGS for the CatalogName, then select the correct value

for NameLength1. For example:

4. Click OK.

5. Select to retrieve the results.

The following list of valid catalogs for the JavaUltraLight data source are returned:
"TABLE_QUALIFIER", "TABLE_OWNER", "TABLE_NAME", "TABLE_TYPE",
"REMARKS"

For more information on SQL catalog functions, see https://msdn.microsoft.com/en-
us/library/ms713520(v=vs.85).aspx.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
31

Day Three

https://msdn.microsoft.com/en-us/library/ms713520(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms713520(v=vs.85).aspx
http://www.magnitude.com/

Implementing Metadata Sources to Handle Catalog Functions

SQL catalog functions are represented in the DSI by metadata sources: there is one
metadata source for each of the catalog functions.

QSDataEngine.MakeNewMetadataTable() is responsible for creating the
metadata sources. Metadata sources are used return the catalog metadata about your
data store to the ODBC application for the ODBC catalog functions.
Double click the TODO #7 Create and return your Metadata Sources message to jump to the
relevant section of code.

QSDataEngine.makeNewMetadataTable() creates sources that are used to return
data to the application for each of the ODBC catalog functions. Each ODBC catalog
function is mapped to a unique MetadataSourceId, which is then mapped to an
underlying IMetadataSource that you implement and return. Each
IMetadataSource instance is responsible for the following:

l Creating a data structure that holds the data relevant for your data store:
Constructor

l Navigating the structure on a row-by-row basis: moveToNextRow()
l Retrieving data: getMetadata(). For more information, see Data Retrieval.

Required Metadata Sources

All custom ODBC connectors must implement the following metadata sources, as they
are required by ODBC applications:

Metadata Source Description

DSI_TABLES_METADATA
List of all tables defined in the data source. This
source is constructed via the QSMetadataHelper
and SQL Engine.

DSI_CATALOGONLY_
METADATA

List of all catalogs defined in the data source, if
catalogs are supported. This source is constructed
via the QSMetadataHelper and SQL Engine.

DSI_SCHEMA_METADATA

List of all schemas defined in the data source. This
source is constructed via the QSMetadataHelper
and SQL Engine. JavaUltraLightDSII does not
support schemas.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
32

Day Three

http://www.magnitude.com/

Metadata Source Description

DSI_TABLETYPEONLY_
METADATA

List of all table types (TABLE,VIEW,SYSTEM)
defined within the data source. This source is
constructed via the QSMetadataHelper and SQL
Engine.

DSI_COLUMNS_METADATA
List of all columns defined across all tables in the
data source. This source is constructed via the
QSMetadataHelper and SQL Engine.

DSI_TYPE_INFO_METADATA

List of the supported types by the data source. This
means the actual types that can be stored in the
data source, not necessarily the types that can be
returned by the connector. For instance, a
conversion may result in a type being returned that
is not stored in the data source.

Most catalog types are created using the metadata helper in conjunction with the SQL
Engine.

Handle DSI_TYPE_INFO_METADATA

The underlying ODBC catalog function SQLGetTypeInfo is handled as follows:

1. When called with TYPE_INFO, QSDataEngine.makeNewMetadataTable()
returns an instance of QSTypeInfoMetadataSource().

2. The JavaUltraLight connector example exposes support for the following types:

SQL_BIT SQL_CHAR SQL_DOUBLE

SQL_INTEGER SQL_
LONGVARBINARY

SQL_LONG_
VARCHAR

SQL_NUMERIC SQL_REAL SQL_SMALLINT

SQL_TINYINT SQL_TYPE_DATE SQL_TYPE_TIME

SQL_TYPE_
TIMESTAMP SQL_VARBINARY SQL_VARCHAR

SQL_WCHAR SQL_
WLONGVARCHAR SQL_WVARCHAR

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
33

Day Three

http://www.magnitude.com/

3. For your custom Java ODBC connector, you may need to change the types returned
and the parameters for the types in
QSTypeInfoMetadataSource.initializeDataTypes().

Handle the other MetadataSources

The other ODBC catalog functions (including SQLTables (CATALOG_ONLY),
SQLTables (TABLETYPE_ONLY), SQLTables (SCHEMA_ONLY), SQLTables and
SQLColumns) are handled automatically by the metadata helper class.

When called with any other MetadataSourceId,
QSDataEngine.makeNewMetadataTable() should return NULL. Returning NULL
tells the Simba SDK to use the metadata helper class returned via
QSDataEngine.createMetadataHelper() along with some default
IMetadataSources to create the data source metadata.

You need to change the following methods in your custom Java ODBC connector:
l QSMetadataHelper.QSMetadataHelper()

The example constructor retrieves a list of the tables in the data source. Modify this
method to load the tables defined within your data store.

l QSMetadataHelper.getNextTable()

In the JavaUltraLight connector, this method returns the next table in the data
source. Modify this method to retrieve the next table from your data store.

l QSMetadataHelper.getNextProcedure()

In the JavaUltraLight connector, this method returns the next procedure in the data
source. If your custom Java ODBC connector supports procedures, modify this
method to retrieve the next procedure from your data store. Otherwise, return
false.

l The DSIExtMetadataHelper class works by retrieving the identifying
information for each table and then opening the table via
QSDataEngine.openTable(). Once you have implemented QSTable, the
correct metadata will be returned for all of the tables and columns in your data
source.

You can now retrieve type metadata from within your data store.

Summary of Day Three

Your custom Java ODBC connector can now return type metadata. You can use a Java
ODBC-enabled application to connect to your connector and retrieve type metadata from
within your data store

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
34

Day Three

http://www.magnitude.com/

Related Links

Fetching Metadata for Catalog Functions in Developing Connectors for Data Stores
Without SQL

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
35

Day Three

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://www.magnitude.com/

Day Four
Day Four instructions explain how to enable data retrieval from within the connector.

Enable Data Retrieval

QSDataEngine.openTable() is the entry point where the Simba SQL Engine
requests that tables involved in the query be opened. It is called during the preparation
of a SQL statement.

TODO #8: Open A Table. (QSDataEngine.java)

Note:

The SQL Engine component of the Simba SDK allows applications to execute
SQL commands on data stores that are not SQL-capable.

QSTable is an implementation of DSIExtResultSet, an abstract class that provides
for basic forward-only result set traversal. The main role of QSTable is to translate the
stored data from your native data format into SQL Data types.

The JavaUltraLight connector is implemented to support Tabbed Unicode Files. It
translates the text from UTF16-LE strings into the SQL Data types defined for each
column within the configuration dialog.

The following sections explain how to implement data retrieval in your custom Java
ODBC connector.

Modify the OpenTable Method

The QSDataEngine.openTable() method is called during the preparation of a SQL
statement. Modify this method to check that the supplied catalog, schema and table
names are valid and correspond to a table defined in your data store. If the inputs are not
valid, return null to indicate that the table does not exist. If the inputs are valid, a new
instance of QSTable is returned.

Modify QSTable

This section tells you how to modify QSTable so that it can work with your data store.

Return the catalog, schema and table names for your table

l QSTable.QSTable(): Modify the constructor to take in the catalog, schema and
table names and save them in member variables.

l QSTable.getCatalogName(): Returns Quickstart.CATALOG (because it has
only a single catalog).

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
36

Day Four

http://www.magnitude.com/

l QSTable.getSchemaName(): Returns null (because it does not support
schemas).

l QSTable.getTableName(): Returns m_tableName.

Return the Columns Defined for Your Table

Modify QSTable.initializeColumns() so that, for each column defined in the
table, you define the ColumnMetadata in terms of SQL types.

Example pseudo code for a custom QSTable.InitializeColumns() method

Get all the column information from your data store for the
table
For Each Defined Column
{

// Change the parameter of this method to the SQL Type that
// maps to your data store type.
TypeMetadata typeMetadata = TypeMetadata.createTypeMetadata

(Types.VARCHAR);

// Depending on SQL type, set different properties:
if (character type)
{

typeMetadata.setIntervalPrecision(m_settings.m_maxColum-
nSize);

}
else if (exact numeric type)
{

typeMetadata.setScale(scale);
}

ColumnMetadata columnMetadata = new ColumnMetadata
(typeMetadata);

columnMetadata.setCatalogName(m_catalogName);
columnMetadata.setSchemaName(m_schemaName);
columnMetadata.setTableName(m_tableName);
columnMetadata.setName(“column name”);
columnMetadata.setLabel(“localized column name”);
columnMetadata.setNullable(Nullable.NULLABLE);

if (character type)
{

columnMetadata.setColumnLength(m_settings.m_maxColum-
nSize);

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
37

Day Four

http://www.magnitude.com/

}

m_columns.add(columnMetadata);
}

Implement Navigation

l The following methods are responsible for navigating a data structure containing
information about one table in your data store, then retrieving data from that table.
Modify these methods for your data store.

l QSTable.moveToNextRow()

l QSTable.getData()

In your custom implementation:
l We recommend that you implement a class that provides a streaming interface for
the data in the table within your data store.

l Provide the ability to navigate forward from one table row to the next.
l Provide the ability to navigate across columns within the row
l Provide the ability to read the data associated with the current row and column
combination.

In the JavaUltraLight Connector, QSTable uses a TabbedUnicodeFileReader,
which provides an interface to navigate between lines within a Unicode text file. This
class preprocesses each row in the file to determine the starting file offset of each
column in the row. Its getData method takes a column index and uses it to calculate
the exact position in the file where the column’s data resides. The method repositions
the file and retrieves the data as if from a byte-buffer. For more information, see Data
Retrieval.

Close the Connection

QSTable.closeCursor() is a callback method called from Simba SQL Engine to
indicate that data retrieval has completed and that you may now do any tasks related to
closing the connection to your data store.

Summary of Day Four

You can now execute queries and retrieve data from your data store. You can use any
Java ODBC-enabled application to execute queries and see the results returned from
your data store.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
38

Day Four

http://www.magnitude.com/

Day Five
Day Five explains how to rebrand and productize your custom Java ODBC connector.

Productize Your Custom Connector

Day Five instructions explain how to productize and rebrand your custom Java ODBC
connector.

Assign a Component ID

For the purpose of prototyping, this TODO is purely informational. The default
component ID is usually sufficient for most connectors. The component ID is used to
identify the component from which an error has been generated so that the correct
component name can be included in the error message.

TODO #9 Assign a unique component ID. (QSDriver.java)

Update the Error Messages

All the error messages used within your DSI implementation are stored in a file called
messages.properties. Update each exception thrown within your DSI
implementation and change the parameters to match as well.

TODO #10 Update Messages properties file. (QSDriver.java)

Extend the ExceptionBuilder Class

For the purpose of prototyping, this TODO is purely informational. The
ExceptionBuilder that is created by default should be sufficient for the vast majority
of connectors. However, if you wish to extend the ExceptionBuilder class, this is
the location where you would instantiate your class.

TODO #11 Create an ExceptionBuilder. (QSDriver.java)

Configure the Error Messages

For the purpose of prototyping, this TODO is mostly informational. By default, the
connector’s messages.properties file resides in the same package as the
QSDriver class. You can modify the code to look in a different package location for the
messages file or to customize the name of the file.

TODO #12 Register the Quickstart messages. (QSDriver.java)

All error messages returned by the connector begin with the component name. Simply
change the “Quickstart” to a name relating to your connector. This rebrands your
converted Simba SDK JavaUltraLight Connector for your organization.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
39

Day Five

http://www.magnitude.com/

First rename all packages, files, and classes by changing all instances of the following
items:

l The word “Quickstart” to the name you chose as a part of TODO #9.
l The letters “QS” to a two letter abbreviation of your choice.

Now you can update the full Java connector name for this TODO to match the path and
name of your connector. Replace the package name “javaultralight” with your re-branded
name as well as the “QS” for the Connector name with your two letter abbreviation.

TODO #2 Update full Java connector name. (QuickstartJNIDSI.cpp)

Create a Connector Configuration Dialog

The connector configuration dialog is presented to the user when they use the ODBC
Data Source Administrator to create a new ODBC DSN or configure an existing one.

The C++ Simba SDK Quickstart Connector project contains an example ODBC
configuration dialog that you can look at, as an example. You can find the source under
the Setup folder within the Simba SDK Quickstart Connector project.

To see the connector configuration dialog that you created, run the ODBC Data Source
Administrator. To do this, open the Control Panel, select Administrative Tools, and then
select Data Sources (ODBC). If your Control Panel is set to view by category, then
Administrative Tools is located under System and Security.

Note:

If you are using 64-bit Windows with 32-bit applications, you must use the 32-bit
ODBC Data Source Administrator. You cannot access the 32-bit ODBC Data
Source Administrator from the start menu or control panel in 64-bit Windows.

Only the 64-bit ODBC Data Source Administrator is accessible from the start
menu or control panel. On 64-bit Windows, to launch the 32-bit ODBC Data
Source Administrator you must run C:\WINDOWS\SysWOW64\odbcad32.exe.

For more information, see 32-bit vs 64-bit ODBC Data Source Administrator.

You are now done with all of the TODO’s in the project. You have created your own,
custom ODBC connector using Simba SDK by modifying and customizing the
JavaQuickstart sample connector. Now, you have a read-only connector that connects to
your data store.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
40

Day Five

http://www.magnitude.com/

Reference
This section contains more implementation details for creating your custom ODBC
connector in Java.

Data Retrieval

In the Data Store Interface (DSI), the following two methods retrieve data from your data
store:

l Each IMetadataSource implementation of getMetadata()
l QSTable::getData()

Both methods will provide a way to uniquely identify a column within the current row. For
IMetadataSource, the Simba SQL Engine will pass in a unique column tag (see
MetadataSourceColumnTag). For QSTable, the Simba SQL Engine will pass in the
column index.

In addition, both methods accept the parameters described below.

data parameter

The DataWrapper into which you must copy your cell’s value. This class is a wrapper
around an Object managed by the Simba SQL Engine. You simply call its set<Data
Type>() and get<Data Type>() methods to store and access the data according to
the java.sql.Type. The data you set must be represented as the Object or
primitive data type that is accepted by the set methods for that java.sql.Type. If your
data is not stored as the appropriate type, you will need to write code to convert from
your native format.

The type of this parameter is governed by the metadata for the column that is returned by
the class. Thus, if you create the TypeMetadata of column 1 in
QSTable::initializeColumns() as Types.INTEGER, then when
QSTable::getData() is called for column 1, you will be passed a DataWrapper
that wraps a Long data type. For IMetadataSource, the type is associated with the
column tag (see MetadataSourceColumnTag).

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
41

Reference

http://www.magnitude.com/

Note:

It is important to note that while Java does not natively support unsigned integer-
types (i.e. the types represented by TINYINT, SMALLINT, INTEGER), the Simba
SQL Engine allows for unsigned data types to be retrieved through the C++ to
Java bridge. By up-casting to a larger signed type for each of the integer-types,
unsigned values can be stored until they are retrieved and converted to the
correct unsigned SQL Type at the C++ end of the bridge. By default, the
TypeMetadata for the column is set to treat the integer-types as signed. To
enable unsigned data, you will need to call TypeMetadata::setSigned
(false) when creating the ColumnMetadata for the column in
QSTable::initializeColumns().

offset parameter

Character, wide character, and binary data types can be retrieved in parts. This value
specifies where, in the current column, the value should be copied from. The value is
usually 0.

maxSize parameter

The maximum size (in bytes) that can be copied into the in_data parameter. For
character or binary data, copying data that is greater than this size can result in a data
truncation warning or a heap-violation.

Java Server Configuration

Your custom ODBC connector can be recompiled as a server and deployed in a client-
server configuration. The connection settings for the connector are normally retrieved
directly from the ODBC DSN. However, when the connector is a server, the settings
cannot be retrieved directly because the DSN refers to the client instead of a specific
connector. Also, to enforce security, clients do not have control over server-specific
settings.

The JavaUltraLight sample connector uses a configuration file to store connection
information for client-server configurations. When the connector’s server flag is set, the
key/value pairs in the configuration file provide extra information about the connection
settings that are passed in during a connection.

To set up the JavaUltraLight server on Windows:

1. Build the JavaUltraLightJNIDSI using a server configuration (i.e. Debug_Server
or Release_Server). This builds the server executable.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
42

Reference

http://www.magnitude.com/

2. Build the JavaUltraLight DSII using the ANT build script, as you would for a
standalone connector.

3. Edit the file qsconfig.properties so that the server flag is set to true and the
[INSTALL_DIR] is replaced to point to the correct DBF location. It should include
the following string values:
SERVER=true
DBF=[INSTALL_DIR]\\Examples\\Databases\\JavaUltraLight

Note:

Double slashes are needed in the path since the values are read in as Java
Strings and the backslashes need to be escaped.

4. Place the qsconfig.properties in the same directory as the
JavaJavaUltraLight.jar file.

5. Ensure that the JNIConfig is configured correctly, as you would for a standalone
connector. For more information, see SimbaClient/Server Developer Guide.

To set up the JavaUltraLightserver on non-Windows:

1. Build JavaUltraLight using the debug (or release) server configuration:
./mk.sh BUILDSERVER=1 MODE=debug

2. Build the JavaUltraLightDSII using the ANT build script, as you would for a
standalone connector.

3. Edit the file qsconfig.properties so that the server flag is set to true and
replace the DBF with the correct path. It should include the following string values:
SERVER=true
DBF=[INSTALL_DIR]/Examples/Databases/JavaUltraLight

4. Place the qsconfig.properties in the same directory as the
JavaUltraLight.jar file.

5. Ensure that the JNIConfig is configured correctly, as you would for a standalone
connector. For more information, see SimbaClient/Server Developer Guide.

Once you have configured the client and server, you should can connect to your data
source.

Related Links

SimbaClient/Server Developer Guide

32-bit vs 64-bit ODBC Data Source Administrator

On a 64-bit Windows machine, you can execute both 64-bit and 32-bit applications.
Many applications are available in 32-bit versions only, and running 32-bit applications

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
43

Reference

http://www.simba.com/products/SEN/doc/Client-Server_user_guide
http://www.simba.com/products/SEN/doc/Client-Server_user_guide
http://www.simba.com/products/SEN/doc/Client-Server_user_guide
http://www.magnitude.com/

on 64-bit operating systems is common.

However, in a single running process, all of the code must be either 32-bit or 64-bit. A
connector must have the same bitness as the application that loads it.

Important:
l 64-bit applications can only load 64-bit connectors and 32-bit applications
can only load 32-bit connectors.

l In a single running process, all of the code must be either 64-bit or 32-bit.

Note:

l Microsoft Excel is available in 32-bit and 64-bit versions.

Using the Correct ODBC Data Source Administrator

When using 64-bit Windows, it is very important that you configure 32-bit connectors with
the 32-bit ODBC data source administrator, and 64-bit connectors with the 64-bit ODBC
Data Source Administrator. This can cause confusion, where what appears to be a
perfectly configured ODBC DSN does not work because it is loading the wrong kind of
connector.

On a 64-bit Windows machine, use the Control Panel to launch the 64-bit ODBC data
source administrator.

To launch the 32-bit ODBC data source administrator, run the following:

C:\WINDOWS\SysWOW64\odbcad32.exe.

Tip:

Create a shortcut to the 32-bit ODBC Data Source Administrator on your Desktop
or Start menu if you configure 32-bit data sources frequently.

Bitness and the Windows Registry

32-bit applications can run on 64-bit machines, but they cannot use 64-bit ODBC
connectors. A 64-bit application must use a 64-bit ODBC connector, and a 32-bit
application must use a 32-bit ODBC connector.

On machines running 64-bit Windows operating systems, system-wide information about
64-bit ODBC connectors is stored in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC,
and system-wide information about 32-bit ODBC connectors is stored in HKEY_
LOCAL_MACHINE/ SOFTWARE/WOW6432NODE/ODBC.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
44

Reference

http://www.magnitude.com/

On machines running 32-bit Windows operating systems, system-wide information about
ODBC connectors is stored in HKEY_LOCAL_MACHINE/SOFTWARE/ODBC. This is
the same location as 64-bit applications running on 64-bit machines.

Note:

32-bit Windows operating systems cannot run 64-bit applications or connectors.

The ODBC.INI Key

The ODBC Data Source Administrator uses information in the following key to connect a
connector to a database:

l HKEY_LOCAL_MACHINE/SOFTWARE/ ODBC/ODBC.INI for 64-bit
applications on 64-bit machines, or 32-bit applications on 32-bit machines.

l HKEY_LOCAL_MACHINE/SOFTWARE/WOW6432NODE/ODBC/ ODBC.INI for
32-bit applications on 64-bit machines.

This key contains a key for each Data Source Name (DSN). For more information about
this key, see https://msdn.microsoft.com/en-us/library/ms715391(v=vs.85).aspx.

The ODBC Data Sources key

The ODBC.INI key also contains a key named ODBC Data Sources that lists the data
sources. The values for the data sources must match the name of each DSN key. For
more information about this key, see https://msdn.microsoft.com/en-us/library/ms709335
(v=vs.85).aspx.

For more information on Windows Registry entries for data sources, see
https://msdn.microsoft.com/en-us/library/ms712603%28v=vs.85%29.aspx.

The ODBCINST.INI Key

The ODBC Data Source Administrator uses information in the following key to define
each connector's name and setup location:

l HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI for 64-bit
applications on 64-bit machines, or 32-bit applications on 32-bit machines

l HKEY_LOCAL_
MACHINE/SOFTWARE/WOW6432NODE/ODBC/ODBCINST.INI for 32-bit
applications on 64-bit machines

This key contains a connector specification key for each connector. For more information
about connector specification keys, see https://msdn.microsoft.com/en-
us/library/ms715391(v=vs.85).aspx.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
45

Reference

https://msdn.microsoft.com/en-us/library/ms715391(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms709335(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms709335(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms712603(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms714538(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms714538(v=vs.85).aspx
http://www.magnitude.com/

The ODBC Connectors Key

The ODBCINST.INI key also contains a key named ODBC Drivers that lists the
installed connectors.

For more information about this key, see https://msdn.microsoft.com/en-
us/library/ms714818%28v=vs.85%29.aspx.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
46

Reference

https://msdn.microsoft.com/en-us/library/ms713572(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms713572(v=vs.85).aspx
http://www.magnitude.com/

Contact Us
For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Note:

To help us assist you, prior to contacting Technical Support please prepare a
detailed summary of the Simba SDK version and development platform that you
are using.

You can contact Technical Support via the Magnitude Support Community at
www.magnitude.com.

You can also follow us on Twitter @SimbaTech and @Mag_SW.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
47

Contact Us

http://www.magnitude.com/
http://www.magnitude.com/

Third-Party Trademarks
Simba, the Simba logo, Simba SDK, and Simba Technologies are registered trademarks
of Simba Technologies Inc. in Canada, United States and/or other countries. All other
trademarks and/or servicemarks are the property of their respective owners.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or
other countries.

Mac and macOS are trademarks or registered trademarks of Apple, Inc. or its
subsidiaries in Canada, United States and/or other countries.

Microsoft SQL Server, SQL Server, Microsoft, MSDN, Windows, Windows Azure,
Windows Server, Windows Vista, and the Windows start button are trademarks or
registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United
States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other
countries.

Solaris is a registered trademark of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

SUSE is a trademark or registered trademark of SUSE LLC or its subsidiaries in
Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in
Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.

www.magnitude.com

©2021Magnitude Software, Inc. All rights reserved.
48

Third-Party Trademarks

http://www.magnitude.com/

	Table of Contents
	About this Guide
	Simba SDK Overview
	ODBC Standards
	The Simba SDK Solution
	About the JavaUltraLight Sample Connector

	Day One
	Install the Simba SDK
	Set Environment Variables
	Build the Sample Java ODBC Connector
	Update the Windows Registry
	Examine the Windows Registry
	Connect to the Data Store
	Set Up a Custom Project
	Update the Registry for a Custom Connector

	Day Two
	Finding the TODO messages
	Find or create the Java Virtual Machine
	Set the Connector Properties
	Set the Logging Details
	Check the Connection Settings
	Establish a Connection
	Update the Configuration File

	Day Three
	Create and Return Metadata Sources

	Day Four
	Enable Data Retrieval

	Day Five
	Productize Your Custom Connector
	Create a Connector Configuration Dialog

	Reference
	Data Retrieval
	Java Server Configuration
	32-bit vs 64-bit ODBC Data Source Administrator
	Bitness and the Windows Registry

	Contact Us
	Third-Party Trademarks

